Changes in ocular torsion position produced by a single visual line rotating around the line of sight––visual “entrainment” of ocular torsion

نویسندگان

  • Laura E. Mezey
  • Ian S. Curthoys
  • Ann M. Burgess
  • Samanthi C. Goonetilleke
  • Hamish G. MacDougall
چکیده

A large- or full-field visual stimulus slowly rotating around the naso-occipital axis of an observer causes both eyes to tort, and many of the factors controlling this optokinetic torsional response have been identified. The present study reports that a single line rotating about the line of sight can cause both eyes to tort in the same direction as the stimulus but with a low gain. We have used the term 'entrainment' to describe this torsional response. This paper reports some of the factors associated with entrainment. Video measures of 3-d eye position were recorded while the subject made settings of a simple visual line to subjective visual horizontal (SVH) and vertical (SVV) using the standard method-of-adjustment paradigm. The visual line was composed of 11 light-emitting diodes; the line subtended a visual angle of 19 degrees, and moved at a constant speed of 4.8 degrees /s. Settings were made in an otherwise darkened room, and also in the light. Subjects were required to maintain fixation of the central LED while making settings from starting positions 10 or 20 degrees either side of gravitational horizontal or vertical. We show that entrainment of ocular torsion by the single moving visual line is low in gain but a reliable and repeatable effect and that (1) there are considerable individual differences between subjects but within-subject consistency, (2) all subjects show larger and more consistent torsional entrainment for lines moving to SVH than lines moving to SVV, (3) the strongest entrainment generally occurs within about 10 degrees of the target position, and (4) entrainment is also present in the light, though with slightly reduced gain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Ocular Torsional Position on Perception of the Roll-tilt of Visual Stimuli

Perceived postural orientation during whole-body roll-tilt is commonly inferred from settings of a visual line to the perceived gravitational horizontal or vertical. This inference assumes that the change in ocular torsional position (ocular counterrolling) which occurs during roll-tilt has no effect on the perceived orientation of the visual stimulus. We investigated this assumption by measuri...

متن کامل

On the relation between ocular torsion and visual perception of line orientation

A recent study by Poljac et al. [Poljac, E., Lankheet, M. J. M., & van den Berg, A. (2005). Perceptual compensation for eye torsion. Vision Research, 45(4), 485-496] concluded that there was complete perceptual compensation for ocular torsion, although they did not directly measure ocular torsion. Using a similar eccentric-gaze paradigm to induce changes in torsion, which were directly measured...

متن کامل

Ocular torsion and the function of the vertical extraocular muscles.

The vertical corneal meridia are not kept perpendicular to the horizon in human and nonhuman primates when the head or body is tilted, i.e., compensatory counter-rolling of the eyes does not occur. The slight torsional displacement of the vertical corneal meridia noted by many observers may be the result of rotation around an axis or to translation of the globe. The neurologic and structural sy...

متن کامل

Upright Perception and Ocular Torsion Change Independently during Head Tilt

We maintain a stable perception of the visual world despite continuous movements of our eyes, head and body. Perception of upright is a key aspect of such orientation constancy. Here we investigated whether changes in upright perception during sustained head tilt were related to simultaneous changes in torsional position of the eyes. We used a subjective visual vertical (SVV) task, modified to ...

متن کامل

Vibration-induced ocular torsion and nystagmus after unilateral vestibular deafferentation.

Vibration is an excitatory stimulus for both vestibular and proprioceptive afferents. Vibration applied either to the skull or to the neck muscles of subjects after unilateral vestibular deafferentation induces nystagmus and a shift of the subjective visual horizontal. Previous studies have ascribed these effects to vibratory stimulation of neck muscle proprioceptors. Using scleral search coils...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2004